Order Reduction of a Distributed Parameter PEM Fuel Cell Anode Gas Channel Model
نویسندگان
چکیده
Distributed parameter modeling is required to accurately consider space variations, which are important regarding the performance and durability of the Proton Exchange Membrane Fuel Cells (PEMFC) [1-3]. However, the number of differential and algebraic equations (DAE) obtained from the discretization of a set of partial differential equations (PDE) is very large, and this not only slows down the numerical simulations, but also complicates the design of online model-based controllers. The inclusion of complex DAE models within model-based control schemes requires a previous simplification. A method to simplify complex models consists of reducing the order while preserving the relationship between certain input and output variables, determined from the control objectives. These Model Order Reduction (MOR) techniques have been extended to DAE systems [4]. This work focuses on obtaining an order reduced model, from a PEMFC anode gas channel PDE model, which incorporates the effects of distributed parameters that are relevant for the proper functioning and performance of PEMFC. The original model is an in-house MATLAB® code, flexible enough to manipulate the underlying model equations and apply MOR techniques. The obtained order-reduced model is suitable to perform numerical simulations and design efficient controllers for the original nonlinear PDE model.
منابع مشابه
Modeling and simulation of a new architecure stack applied on the PEM Fuel Cell
To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...
متن کاملThe effect of increasing the multiplicity of flow fields contact surface on the performance of PEM fuel cell
In this paper, three innovative 3-D geometries for flow fields of cathode and anode have been developed to investigate the comparative impact of increasing the multiplicity of the involved anode-cathode channel surface contact on the efficiency of electrochemical reaction via the same membrane electrode assembly (MEA) active area. In the introduced new models, each anode channel includes two, t...
متن کاملEffect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell
There are several obstacles to the commercialization of PEM fuel cells. One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...
متن کاملDesign of Innovative Channel Geometrical Configuration and Its Effect on Species Distribution
In this research, the impact of shoulder width and geometry of gas channel with different structures on proton exchange membrane (PEM) has been investigated using numerical method. 3D, non-isothermal was used with single straight channel geometrywhile maintaining the same boundary conditions and reaction area with addition of humidification for anode and cathode. Our study showed that an ellipt...
متن کاملNumerical study on the performance prediction of a proton exchange membrane (PEM) fuel cell
An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...
متن کامل